Search the Community

Showing results for tags 'global warming'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Announcement
  • Business & Politics
  • Cars & Transportation
  • Culture & Celebrity
  • Energy
  • Renewable Energy
  • Fashion & Beauty
  • Food & Health
  • Global Warming
  • Green Action Tip
  • Design & Architecture
  • Green Blogging
  • Green Quote
  • Green Video
  • Green Web Hosting
  • Science & Technology
  • Nature & Travel
  • Agriculture
  • Bali 2007
  • Biodiversity
  • Biofuels
  • Go Live Give
  • Poland 2008
  • Copenhagen 2009
  • Quick Read
  • Photo Gallery
  • Politics
  • Nature & Wildlife
  • Activism
  • Science
  • Featured
  • Uncategorized
  • COP21

Forums

  • Site Forums
    • Members Lounge
    • Contributors Lounge
  • Environment Forums
    • Green Talk
    • Climate Change
    • Agriculture
    • Wildlife and Biodiversity
    • Sustainable Design
  • Green Living Forums
    • Living Green
    • Good Food
    • Gardening
    • Transportation
    • Activism
    • Green Products and Services
  • Energy Forums
    • Energy
    • Renewable Energy
    • Non-renewable Energy
    • Nuclear Energy
  • General Discussion Forums
    • General Talk
    • Politics and Current Events
    • Science and Technology
    • Entertainment
    • Religion and Philosophy

Blogs

There are no results to display.

Calendars

  • Community Calendar

Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Political views


Religious views

Found 81 results

  1. The 15th United Nations Climate Change Conference (COP15) in Copenhagen, which many have said was our last chance to take action against "the greatest threat the world has ever faced", ended in a failure. For over 15 years delegates and politicians from around the world have discussed, debated and negotiated the questions of dealing with man-made climate change in various COP (Conference of the Parties) summits. So why haven't they made any real progress yet? That is a big question that covers a whole range of topics and issues that I won't go into. Instead I will try to focus on the actual politics and tactics used at the COP summits. I will try to see if uneven development and inequality plays any part in how the actual negotiations plays out, how the delegates attending perceive climate justice and fairness, and if all this combined somehow sabotages the efforts to secure a climate deal. At the major United Nations Earth Summit in Rio de Janeiro, Brazil, in 1992 more than 100 world leaders met to address the question of global climate change. At the end of the conference 187 nations signed the United Nations Framework Convention on Climate Change (UNFCCC) treaty. Without any "tough details" the agreement said nations should "protect the climate system"¦on the basis of equity and in accordance with their common but differentiated responsibilities and respective capabilities." World leaders managed to get a consensus and reach an agreement but they still had disagreements on what kind of responsibilities nations had under the UNFCCC treaty. The "common but differentiated" phrase seems to have resulted in various different interpretations between the "North" and the "South". The poor developing nations were, compared to the North, very precise in their interpretation of the phrase and called for the rich developed nations to take the lead in the emission reductions. They also wanted the North to help developing nations in their environmental efforts by transferring large amounts of economic and technologic assistance from the North to the South. The North on the other hand interpreted the phrase a bit differently. According to the UNFCC treaty $625 billion was needed every year for a sustainable development to take place in the developing nations. Around 20% of the money would be paid by below-market loans to the South. But the developed nations never fulfilled their promise of economic and technologic assistance to the South. In the end they paid less than 20% of the $625 billion. In 1995, three years after the Rio Earth Summit, the first COP conference took place in Berlin, Germany. Here the so called "Berlin Mandate" declared that the developed nations in the North should reduce their emissions first while the developing nations would join in later on. Two years later in 1997 at the COP3 conference in Kyoto, Japan, the US president Bill Clinton actually signed the famous Kyoto Protocol, which called for binding reductions in greenhouse gas emissions. But the protocol was never ratified by the USA because of the US senate which voted unanimously in favor for the Byrd-Hagel Resolution. Once passed the Byrd-Hagel Resolution successfully blocked any climate treaty that was, in their words, "unfair". Because the Kyoto protocol did not require the developing nations to do any emissions cuts the US senate felt it was "unfair" and refused to ratify it. And it is now, with the Kyoto protocol, that you can start to clearly see the different positions and opinions the North and the South, rich and poor, developed and developing nations have on what climate justice actually is. Developing nations didn't want to accept any scheduled emission reduction targets for the future. Any mention by the North that the developing nations should in some way slow down their development and economic growth by limiting their greenhouse gas emissions was met with an "openly hostile negotiating environment" from the South. The Brazilian ambassador Luis Felipe Lampreia stated during the COP3 conference that: "We cannot accept limitations that interfere with our economic development." And the lead negotiator from China said: "In the developed world only two people ride in a car, and yet you want us to give up riding on a bus". The developed nations are responsible for about 80% of the worlds CO2 emissions. One person in Bangladesh will during a whole year emit as much CO2 emissions as one average person living the UK will in only 11 days. A single power plant in Great Britain will produce more CO2 emissions, every year, than all 139 million people living in Uganda, Kenya, Tanzania, Malawi, Zambia and Mozambique combined. It is also clear that developing nations are much more vulnerable to the effects a changing climate brings such as droughts, rising tides, floods and tropical storms than rich and developed nations are. And nine Chinese and eighteen Indians release as much greenhouse gas emissions into our atmosphere as one average American does. The USA is alone responsible for over 20% of global greenhouse gas emissions, but only around 4% of the world's total population lives in the USA. A whopping 136 developing nations are on the other hand together responsible for 24% of global emissions. But the former US President George H. W. Bush once notoriously stated that "the American lifestyle is not open to negotiation". His son, George W. Bush later dismissed the Kyoto protocol completely by claiming that the treaty "would cause serious harm to the US economy" and that it is "an unfair and ineffective means of addressing global climate change concerns". Even in light of these clearly uneven numbers the North's perception of climate justice seems to be to disregard any kinds of historical responsibilities or economical differences, the very same issues that the South thinks are the basis of climate justice. And these rather different perceptions on climate justice between the rich and poor nations help fuel an deteriorating negotiating atmosphere. When it comes to the negotiations during these summits, like the COP15 this past December, the income differences between developing and developed nations plays a big role in creating a hostile negotiating environment for the delegates. It is also one of the more direct examples on how inequality can dampen cooperation on climate change. Attending these yearly COP summits obviously costs money. Nations need to be able to pay for their delegate's salaries and accommodations. Other costs involves scientists, lawyers, translators, economists and consultants that can help the nations delegation in the actual negotiations, with their draft proposals, legal argumentation as well as being able to offer counterarguments and proposals to the demands of other nations. "The reason why many poor small countries are hardly represented in negotiations that concern them directly, writes Robert Wade, is that they cannot afford the cost of hotels, offices, and salaries in places like Washington DC and Geneva, which must be paid not in PPP [purchasing power parity] dollars but in hard currency bought with their own currency at market exchange rates (quoted in J.T. & Parks, 2006: 15)." Unfortunately many of the less developed nations (LDCs) cannot afford all this and most of the time they will have to go without this much needed help. Just a little side note to show how just bad these things can get: At a seminar in the aftermaths of COP15, at the Lund University in Sweden, a CPS student from Bangladesh told us about how he had, at a visit to the Bella center (where the climate talks were being held), walked into the delegation from Bangladesh. And after a short chat with them he ended up helping the delegation with translations at the big UN summit. The delegates also need to attend all the formal and informal meetings during the climate summit. And these can be many and scheduled to take place at the same time. If you have several delegates you can easily divide up the work and focus on certain issues, read every single document and draft texts. That's why the more delegates you can send the better. Studies have shown that there is a great difference between the numbers of delegates developed and developing nations are sending to these COP summits. For example: To COP6, in the Netherlands, the USA sent 99 delegates and the European Commission sent 76 delegates. Many developing nations such as African and small island states were lucky if they could even afford to scramble together a delegation consisting of one to three delegates. Recent studies and experiences at COP10 in 2004 confirm and back this up. During COP6 the chairs decided to split up the negotiations into smaller groups, subgroups and even subsubgroups so that they could easier cover all the climate related issues in an easier manner. Sure, this move can in an equal and perfect world make the debates and meetings flow much smoother. But with the current inequality between developed and developing nations it can make things worse. As you can imagine this decision gave a huge advantage and "agenda-setting power" to the developed nations who had been able to send many more delegates to the COP summit than the poorer nations had. Another problematic side effect of not being able to send enough people to the climate summits is that the developing nations delegates often gets "buried" in documents and papers. This of course leads to the delegation losing its strength and energy. In the last hours of the summit they could then be presented with a document or proposal to a treaty which is already done and beyond alteration and forced to accept or reject it in an unrealistic short period of time. The developed nations use this to get a tactical advantage of the developing nations. They can offer a document at the last hour and pressure everyone to sign it. If the developing countries don't accept it they are later labeled by the developing nations as the "bad guy" and the ones responsible for wrecking the climate talks (Huffington Post, 2009). At COP6, for example, "commitments were imposed by muscular chairmanship, or gaveled through without reaction from negotiators exhausted to the point of sleep," Ashton and Wang claim. But this approach does not always succeed as can be seen by the walkout by G77 delegates in 2003 at the Cancun trade negotiations, or from the failure of the COP6 summit where China and the G77 group felt marginalized by the developed nations. Or from the walkout by African nations at the latest COP15 summit in Copenhagen. The nasty behind-the-back tactics and behaviors used in the past by developing nations were also present at the latest COP. During the first week of the COP15 summit in Copenhagen a potential final agreement, called the "Danish text", was leaked to the Guardian. The draft text was apparently worked out by developed nations such as the UK, US and Denmark and planned to be adapted by nations during the final week of the summit. The draft agreement made the developing countries "furious" as it would give even more powers to the rich nations, weakening UN's future role as well as abandon the Kyoto protocol. Many NGOs, commentators and political leaders have criticized these COP summits and the tactics being used as unfair and even undemocratic. At the end of COP15 the Venezuelan President Hugo Chavez for example called the summit "undemocratic". Raman Mehta from Action Aid India said this in a statement, in light of the "Danish text", that: "The global community trusted the Danish government to host a fair and transparent process but they have betrayed that trust. Most importantly, they are betraying those who are disproportionately impacted by climate change and whose voices are not being heard. This unfair behaviour strikes a blow to all efforts to achieve justice and equity in the climate change negotiations process (quoted from Friends of the Earth, 2009)." George Monbiot's verdict on the COP15 summit wasn't much better. He called it "stupid" and labeled the organizers and attendees of the summit as incompetent: "This was the chaotic, disastrous denouement of a chaotic and disastrous summit. The event has been attended by historic levels of incompetence. Delegates arriving from the tropics spent 10 hours queueing in sub-zero temperatures without shelter, food or drink, let alone any explanation or announcement, before being turned away. Some people fainted from exposure; it's surprising that no one died. The process of negotiation was just as obtuse: there was no evidence here of the innovative methods of dispute resolution developed recently by mediators and coaches, just the same old pig-headed wrestling." One also need to keep in mind that local environmental problems such as preventing soil erosion, providing clean drinking water, treating sewage and slowing down the spread of deserts are for most developing nations a much more critical and pressing issue than the more global ones. For developed nations the more global environmental issues such as climate change, ozone depletion and habitat loss are higher up on their priority list. This means that the developing nations need to put more effort into pursuing the South that the global issues should be a higher priority for them. At the same time many delegates and policy makers from the less developed nations fear that the nations in the core of the world system, which I explained earlier, might just use the climate and environmental concerns to cover up their real agenda: keeping the periphery nations underdeveloped. After being literally forced to accept trade-related, intellectual and property-rights laws and agreements that gives an advantage to the North many South policy makers and even academics hold this opinion of mistrust. And this is a reason to why there is such a big "climate of mistrust" at the COP negotiations. The North has almost constantly failed to keep their promises of financial aid, technological transfer, ignored many of the ecological problems in the South and used tactics to marginalize the South at negotiations. So it's not really that hard to understand that any suggestions from the North that the South should limit their development, for the good of global environmental issues, are met with a dismissive response from the developing nations. Final Thoughts So the lack of power and the extreme poverty and underdevelopment among many of the developing nations leaves them vulnerable in negotiations with the North. It's more expensive for developing nations to purchase environmental technology and knowledge as they have to be paid with real cash and not credits or loans from the North. This makes it hard for them to perform any kinds of meaningful emission reductions or take part in the COP summits on equal terms. The wealthy developed nations believe that climate justice is when an agreement involves all parties, both developed and developing nations. Because, they argue, the non-Annex I nations will in a near future increase their emissions with so much that they must be included in a climate treaty. The poorer developing nations on the other hand perceive this in another manner. The climate crisis is a result from the rich North's excessive consumption. And so they argue they also have the right, just like the North, to build and develop their economy using cheap fossil fuels. The ozone layer crisis during the 1980's is a good example of how the world can come together to combat global environmental issues. The negotiations back then was just as hard and complex as the climate talks are today. During the negotiations a Chinese delegate said that: "The call for modernization is so irresistible that China will continue to produce these ozone depleting chemicals," unless, of course they and other developing nations received financial compensation for their efforts. India was equally tough in their negotiations and their environment minister said in a statement that: "We didn't destroy the layer. You did. I'm saying that you [the West] have the capability and the money to restore what you have destroyed" (Do you recognize the style of the statements back then to the ones in today's climate debate?). In the end the North agreed to give financial aid to the developing nations so that they could afford to take proper actions and protect the ozone layer. But the current climate change negotiations are taking place in an even tougher "climate of mistrust" between the rich and poor. This mistrust is based on decades of Western promises not kept in global environmental and economic matters. To get rid of this suspicion and mistrust that is sabotaging efforts to secure a climate deal the North needs to understand their historical responsibility in this matter. As well as taking social and economic issues into account when negotiating about climate targets. The North could do this by offering a new and fairer global environmental and development treaty that clearly shows their commitments in this issue. "They could do this by providing greater "environmental space" to late developers, supplying meaningful sums of environmental assistance, funding aid for adaption and dealing with local environmental issues as well as global issues like climate change, and by identifying and investing in win-win technologies and sectors that both address local environmental issues and reduce greenhouse gas emissions (quoted in J.T. & Parks, 2006: 217)." Basically the North needs to stop treating the weaker nations in the South as "second-class citizens" and work on rebuilding the South's trust. Until they do we won't get a fair, ambitious and binding climate deal (Or a planet with a habitable biosphere!). Further reading: Roberts, J.T. & Parks, B.C. (2006). "A Climate of Injustice: Global Inequality, North-South Politics, and Climate Policy" Hornborg, A., J.R. McNeill & J. Martinez-Alier, red. (2007)."Rethinking Environmental History: World-System History and Global Environmental Change" Age of Stupid, "UK Priemier: Message from the President of the Maldives" (2009) The Guardian, "Low targets, goals dropped: Copenhagen ends in failure" (2009) United Nations Earth Summit+5 The Huffington Post, Pablo Erick Solón Romero Oroza, "Climate Headed for Crash Landing" (2009) Goodman, Amy, "The Climate Divide: Dispute Between Rich and Poor Nations Widens at UN Copenhagen Summit" (2009) Monbiot, George, "Copenhagen negotiators bicker and filibuster while the biosphere burns" (2009) Democracy Now, "Venezuelan President Hugo Chavez on How to Tackle Climate Change" (2009) The Guardian, "Copenhagen climate summit in disarray after 'Danish text' leak" (2009) Friends of the Earth International, "danish government slammed for bias and secrecy in role as president of un climate conference" (2009)
  2. Lord Nicholas Stern, British economist and academic who is most known for the Stern Review said, during an improvised speech at a Cape Town hotel in South Africa, that if we don't act quickly and determinedly to address climate change the world will face billions of climate refugees and extended world wars in a near future: "If the world's nations act responsibly, Stern said, they will achieve "zero-carbon" electricity production and zero-carbon road transport by 2050 _ by replacing coal power plants with wind, solar or other energy sources that emit no carbon dioxide, and fossil fuel-burning vehicles with cars running on electric or other "clean" energy. Then warming could be contained to a 2-degree-Celsius (3.4-degree-Fahrenheit) rise this century, he said. But if negotiators falter, if emissions reductions are not made soon and deep, the severe climate shifts and sea-level rises projected by scientists would be "disastrous." It would "transform where people can live," Stern said. "People would move on a massive scale. Hundreds of millions, probably billions of people would have to move if you talk about 4-, 5-, 6-degree increases" _ 7 to 10 degrees Fahrenheit. And that would mean extended global conflict, "because there's no way the world can handle that kind of population move in the time period in which it would take place.""
  3. Can we fix the climate without reducing emissions? Might there even be a way to fix the climate that is cheaper then reducing emissions and doesn't have side-effects? In this post I will look at some of the more creative proposals for fixing the climate, and see if they are any good. Many of the ideas I'll present here sound like crazy-talk at first, and I'm not saying that they necceceraly aren't, but I don't think they should be disregarded before we have considered them. I'll start with one of the most popular ideas: Pumping fine particles of sea-water into clouds to make them bigger and more reflective. This youtube-video explains it all: The good thing about cloud-seeding is that it can be very cheap. As mentioned in the clip only 500 litres of salt water a second, or something of that magnitude, needs to be sprayed up in order too control temperatures on earth. We would need roughly 1500 ships to counter-act a doubling of CO2 in the atmosphere, costing 1,5 to 3,5 million dollars each. And to keep up with the current rate of increase in atmospheric carbon-dioxide levels we would need 50 new ships a year. Not that much for saving the climate. The Copenhagen Consensus Center, where top economists have tried to estimate the costs and benefits of different solutions to climate change, write this about the costs: Marine cloud whitening with a fleet of unmanned ships would be extremely cheap: for about $5.8 billion, all of the global warming for the century could be avoided. But is it possible that seeding the clouds might change the worlds weather patterns, and lead to droughts, etc? Yes. That's one of the reasons why we need to research this a lot more. But one of the great things about marine cloud whitening is that it's so flexible. If placing the boats one place leads to problems we might solve the problem by simply moving the boats. Maybe we even can make the worlds rain-patterns better (by prevent droughts, etc.) if we gain a good enough understanding of the climate system and how cloud seeding affects it? Since the boats can be controlled the amount of cooling can also be controlled, via satellite measurements and a computer model. And what do we do if marine cloud whitening doesn't work out? Then we stop doing it, and everything will return to normal within a few weeks. Which also means that it will be risk-free to do small-scale testing of the technology. But hey, you might think, won't the clouds become salty? Well, in a way they already are, as tiny salty water droplets from breaking waves already enter the atmosphere and help forming clouds. Marine cloud whitening only enhances a natural process. As far as I understand, the water always needs something to cling to (particles like dust, smoke, or salt) in order to form clouds, but when the clouds first have started forming they grow really big, and become mainly freshwater. So there is no danger of there raining salty water if we start with marine cloud whitening. Releasing sulfur in the stratosphere Picture of the volcano eruption at the Philippines in 1991, which reduced world temperatures by 0,6 degrees. In 1991 Mount Pinatubothere, a volcano in the Philippines, had a huge eruption. 10 million tonnes of sulfur was ejected into the stratosphere - the part of the atmosphere which is placed at about 10-50 km (6 - 31 miles) above Earth's surface. The sulfur was moved in different directions by the air motions, and after about a year it was evenly spread around the world. For two years after Pinatubo erupted, the average temperature on Earth decreased by about 0.6 °C (0.9 °F). The idea is to send up rockets (or baloons, or some other mechanism) to simulate a volcano eruption. At first normal fuel is used to lift up the rockets, but in the stratosphere hydrogen sulfide is burnt, leaving sulfate (which consists of sulfur and oxygen) in the stratosphere to reflect sunlight, and thus cool the planet. Of course this wouldn't be free, but a lot cheaper than cutting emissions. Paul Crutzen, one of the top experts on this subject, has estimated that it would cost between 25 and 50 billion dollars a year (in comparison we spend over a thousand billion dollars a year on the worlds military and well over 250 billion dollars a year on subsidizing farmers in developed countries). And we have all the necessary technology to implement this measure at once, if we want to. But unfortunately this is not a problem-free solution. We don't yet know if it would disturb rain-patterns. And emitting sulfur is considered as polution, because it leads to health problems and because it leads to acid rain. That's why the release of it has been reduced through environmental regulation. It is naturally emitted by volcanoes and by the sea, but we shouldn't get to much of it. However, it should be noted that this sulfur would be released far up in the stratosphere. And further: Since it will have a greater cooling effect when released in the stratosphere it is predicted that we will need too release less then 10 percent of what is already being emitted by humans. A side-effect that there is a bigger reason to be afraid of is that releasing sulfur in the stratosphere might slow down, or even reverse, the healing of the ozone layer. The volcano eruption in 1991 led to a global column ozone loss of about 2.5 percent. However, we won't need to use as much sulfur as was emitted in the colcano eruption in order too compensate for a doubling of CO2 in the atmosphere through geoengineering. The ozone layer is healing. It's better than it was a few decades ago, and it will continue to get better. So if we start reducing temperatures some decades from now the ozone layer won't necessarily get worse than it is now, only worse than it otherwise would have been then. Ironically one the people who has done the most research on releasing sulfur in the atmosphere is Paul Jozef Crutzen, who won a nobel prize in 1995 for his work on the hole in the ozone layer. He thinks that we at least should test his plan, so we know now what the risks might be if we face a catastrophic situation in the future. He says: Since the sulfur only stays in the stratoshpere for two years or so, he also makes clear: It is being discussed if we could use other cooling particles than sulfate. If you are interested you can see a short presentation that mentions this here. Launching glass discs into space This is what the glass discs might look like. They won't reflect the light, but divert it from hitting earth. Another idea is to launch glass discs into space so that roughly two percent less sunlight reaches earth. The reduction in incoming sunlight would cancel out the increase in climate gases. The plan isn't as crazy as it sounds. Even without using nanotechnology (which is emerging) we can get these glass discs pretty thin, and there are realistic ideas for how we can launch these glass discs into space by using electromagnetic power (much more effective for sending large quanteties out in space than using space ships). By placing these glass discs at the point in space where the gravitational force of Earth and the Sun cancel each other out (which is pretty close to earth) we won't need much energy to keep them in place. But even though the idea is feasible and has small side-effects it will be very expensive (although probably not as expensive as drastic cuts in emissions) and will take 30 years or so to implement. Therefore I won't use more space on it here, but if you are interested in learning more about it you can see this youtube-clip, and continue on to see this. And if you are especially interested you can read more about the arguments for and against here. Getting the sea to take up more CO2 The phytoplankton turns sunlight into energy, and thus provides food for the rest of the food chain as well, just like plants on land do. Had it not been for phytoplankton the sea would have been a lot less lively than it is today. Three fourths of the world is covered by the ocean, which naturally absorbs about one third of our CO2-emissions. In the sea it's not just "normal" plants that get their energy from the sun, but also phytoplankton. Phytoplankton account for around half of all photosynthetic activity on Earth. The phytoplankton absorbs CO2, and releases oxygen. It doesn't release the carbon when it dies. Much of the plankton is eaten by other sea-creatures, but much of it also sinks further down in the ocean and stays there for a long time. Planktos-science.com tells us: Phytoplankton rely on minerals. In parts of the ocean the growth of phytoplankton is limited by lack of iron, and across most of the sea we can boost the phytoplankton-growth by adding nitrogen. The idea is to add nutrients to the ocean, and thus boost the growth of phytoplankton, so that they turn more CO2 into oxygen and make sure that more carbon is stored in the ocean. This youtube-video explains the idea in greater detail: Phytoplankton takes energy directly from the sun. And just like all animals on land are dependent on plants to provide energy, phytoplankton (and other sea-plants) are the foundation for life under the sea. As seen in the clip there is such a thing as too much phytoplanton, but it's important that we seperate between the deep sea and the parts of the ocean that's close to the shore, and between iron- and nitrogen fertilization. Acording to planktos-science.com phytoplankton blooms on the high seas where iron is limited have never been reported to produce negative environmental effects. And as explained in the clip, it's like irrigating the dessert. If it doesn't work out, we can stop doing what we are doing, and things will return to normal. The picture shows a phytoplankton bloom off the coast of Norway in 2000. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE. Plankton-blooms occur naturally all the time. And the ocean is supposed to be "fertilized" with minerals. This happens naturally when dust is carried by the wind and lands in the ocean. Much of the life in the ocean is totally dependent on this. But the natural flow of dust containing minerals vital for phytoplanton has been reduced significantly over the last decades. According to NASA, the amount of iron deposited from desert dust clouds into the ocean has decreased by 25 percent since the early 80's. In addition to this the growth of phytoplankton is reduced when sea temperatures rise. An article from NASA 2003 tells us that there has been a 6 percent reduction of phytoplankton growth in the ocean as a whole over the last two decades. Newer studies confirm this picture of phytoplankton growth decreasing. Near the shore phytoplankton growth seems to be increasing, but this is not relevant to the queston of iron-fertilization, which will take place in the deep ocean where the growth of phytoplankton is limited by the lack of iron. The fact that the growth of phytoplankton, and even the natural supply of iron, has been reduced significantly because of human activity, means that we don't have to look at iron fertilization as fiddling with nature, but rather as making it more simular to what it would have been if we hadn't interfered at all. In an interview with treehugger.com, which I recommend reading in its entirety, David Kubiak from Planktos, Inc. claims: Returning plankton populations to 1980 levels would neutralize about 50% of industrial society's greenhouse gas emissions. But there is debate about how effective iron fertilization will be. One of the things we don't know for certain is how much of the phytoplankton that will sink to the bottom of the sea or stay in underwater currents for a long time, and how much of it that will be released to the athmosphere more quickly. To read more about the arguments for and against iron fertilization you can click here or here. And to hear the pro-side you can see this presentation by Russ George, or read more on planktos-science.com. Making artificial "trees" The idea is to make machines that can absorb CO2 from the air. It can obviously be done. Plants do it all the time. But do we have the technology already? Will it be cost-effective? And will it take a lot of energy? A twelve minutes long video about artificial trees can be seen here for those of you who are interested, but here is a shorter one: The good thing about this solution is that it doesn't have any side-effects. Let me repeat that. It doesn't have any side-effects. All it does is to reduce the amount of CO2 in the atmosphere. Just as we increase the CO2-levels across the whole world when we emit a lot from one place (a coal power plant heats up the whole world, not just the city it's placed in) we don't have to think about where we place these "trees". The most practical will probably be to place them above the storing-sites for the CO2. 60 million trees, which is roughly the amount needed to absorb all the CO2 we currently emit, will not take up that much space. Klaus Lackner, the person who is leading the development of these trees, says in an interview with the The Green Inc. blog: We have reached a point where we can collect CO2 from the air and recover it - at a low cost. Now it's a production issue, rather than an 'inventing new things' kind of issue. But where do we put all the CO2 when it's collected? One solution is geological storage: Pumping CO2 into rock formations on the bottom of the sea, or deep underground elsewhere, into rock-formations. This is more feasible then it sounds, and has already been done successfully in Norway and Canada. If you are interested in reading more about how and why this works, and about the details, you can read here. The conclusion is that it can be done, and that it can be done safely. Under the high pressure CO2 takes up a lot less space, so we can store quite a lot of it this way, but as far as I know there is still doubt about whether or not we will be able to store all of the CO2 we will emitt in the long run using this method. But already new, promising ideas for how we can store more CO2 are emerging, like binding it to mineral substances. Great! So there we have our perfect solution to climate change. ...Or do we? Klaus Lackner thinks that the price of using these artificial trees to fight global warming can reduced to roughly $30 per ton of CO2 collected (which corresponds to about 25 cents a gallon or 7 cents per litre of gasoline), in current prizes. In 2006 we emitted 28 billion tons of CO2. Paying for that would cost 850 billion dollars. Of course the calculation would be more complicated than this in reality, partly because it will be cheaper to capture CO2 from point sources where concentrations are higher (such as a coal power plant), but it still won't be cheap. If we only could fight climate change by reducing emissions we would be in real hurry. And we kind of are also when we take geoengineering into account, since the negative consequences of global warming have started to occur already. But if it mainly is the consequences that will occur in some decades we are worried about (2035? 2050?) being able to take CO2 out of the atmosphere gives us the benefit of being able to wait a bit. This is good for two reasons: First of all, as we all know, technology is getting better and better. And there is no reason to think that science will stop advancing soon. Rather to the contrary all the information available to us makes it reasonable to expect that the advancing of technology will keep growing exponentially. I will write more about why I think there is reason to be very optimistic about how much better technology will get in the following decades in later blog posts. In the meanwhile it should be noted that one of the things that will revolutionize our ability to absorb CO2 (in addition to revolutionizing everything else) is the emergence of nanotechnology, which will enable us to design things on an atomic and molecular scale. When we can design things on such a small scale we will not only be able to make very small and very complicated machines, and do much of what we do today much more effectively, but we can also make new materials different from those we have today. The advancement of technology increases our productivity, and thus makes us richer. So even if the technology doesn't changes drastically, it will still be easier for us to afford. Obviously there are limits to how long we can wait, but I still think this was worth mentioning. These arguments aren't just relevant for artificial trees, but for all geoengineering. Many solutions Here I have looked at some of the solutions. But there are many other ideas out there. Like creating white, floating islands in places of the sea that we don't use much (of cheap materials, obviously) so that more sunlight is reflected. Or turning the Sahara and the dry parts of Australia into forests. Another idea is genetically engineering crops to be more reflective or shifting to more reflective crops. And although painting our roofs white probably wont solve the problem by itself, it is proposed as a cheap way to make earth colder. There are also ideas for how we can solve specific problems related to global warming, like stopping the melting of Greenland by wrapping the edges with reflective materials - a method that also can be used on glaciers. I agree that many of these ideas sound bad, and some of them probably are, but we should give them a serious look . Is it crazy to look for a technical solution for global warming? Some people dismiss geoengineering without even having looked at the different proposals. They'll say things like "you can't fix the climate by fiddling even more with it" or "we can't possibly know the outcomes of geoengineering". Although I think that many geoengineering-ideas aren't advisable, I don't think it's reasonable to conclude that geoengineering in general is doomed to not work or be risky. It might very well be that we soon find a solution that is without risk, without side-effects and cheap. If we don't, I still think geoengineering might be the answer, as long as we find a safe alternative with modest side-effects. What would happen if we stopped emitting tommorow? If history is a guide there is little reason to be optimistic about humanity cutting greenhouse-gas emissions. We have broken all climate-treaties so far, and global emission-levels are even higher than the highest scenario produced by the Intergovernmental Panel on Climate Change in 2001. Even stopping the emissions from increasing further would require quite a lot of action, if we are to do it right now. And even if we do manage to take action to reduce emissions it will take time before they are reduced enough to stop the accumulation of climate gasses in the athmosphere. But let's say that we did take drastic action. Tomorrow all people on earth would stop driving cars, we would stop flying, all energy production involving fossil fuels would be stopped, we would stop all agriculture that emits methane, all industry that isn't environmentally friendly would be stopped, we would end deforestation once and for all, etc. Let's say that we went way further than even the most extreme environmentalists would want us to, and stopped all human emissions of climate gases in just one day. What would happen? What would happen is that the temperatures would keep increasing. Shortly explained this is because it takes time for the climate system to fully respond to increased emissions. NASA explain on their webpages: Even if all emissions were to stop today, the Earth's average surface temperature would climb another 0.6 degrees [Celsius] or so over the next several decades before temperatures stopped rising. Therefore geoengineering-plans might be a more environmentally friendly alternative than just drastic cuts in emissions, even if they have environmental side effects! Don't get me wrong: This doesn't mean that there aren't limits to how much environmental side-effects we should allow, or that a geoengineering-plan that doesn't have environmental side effects at all isn't preferable. And of course I am aware that it's possible to combine geoengineering and big, immediate cuts in emissions, if we think that's smart. Some geoengineering-solutions, like the ones that rely on decreasing the amount of solar radiation that is absorbed by Earth (glass discs in space, sulfur in the atmosphere, marine cloud whitening, etc.), aren't permanent solutions. We can't keep on emitting CO2 forever. But seriously, who thinks that steering the amount of climate gases in the atmosphere will be a challenge in 2100? We need a solution that solves the problem for long enough, but it doesn't need to solve the problem for ever. It should be taken into account that a solutions that relies only on controlling solar radiation don't solve other problems connected to CO2-emissions, such as acidification of the ocean. Price matters Let's us say (just for the sake of the argument) that the alternatives are reducing emissions and releasing sulfur in the stratosphere, and (also just for the sake of the argument) that we can stop global warming completely by reducing emissions if we reduce them fast enough. Let's also say (still for the sake of the argument) that we find out that releasing sulfur in the stratosphere will lead to some harm to the ozone, which again will lead to more cases of cancer. Then we should reduce emissions, shouldn't we? What kind of people would we be if we think it's ok that more people die of cancer? Well, since releasing sulfur in the stratosphere is a lot cheaper than drastically reducing emissions, we could save a lot of money on choosing this alternative. And if we spent a fraction of the money saved on cancer research we could double the research on cancer many times over, and thus reduce the cancer-burden significantly. Price matters. We only have a limited amount of resources, so we have to make sure that we achieve the greatest amount of good per dollar. So how can we most effectively address climate change? Exactly this question The Copenhagen Consensus Center on Climate tried to give an answer to in 2009: http://www.youtube.com/watch?v=9kIUZU5xQz0&hl=en_US&fs=1 Here is the prioritized list that the top economists (including three Nobel-prize winners) came up with: As you can see, the highest ranked solutions are research on geoengineering and low-carbon technologies. You can read more about the different solutions on the list, and the reasoning behind how they prioritize, here. I don't know if The Copenhagen Consensus Center on Climate have gotten their cost-benefit analysis exactly right. An article on Realclimate.org critizises their report on geoengineering. Some of the critisism I think is illegitimate, other parts I think is fair, but I don't think there is any reason to doubt their main conclusions. Regardeless I think their way of thinking is exactly right: How can most effectively fight global warming? If we ranked the solutions after how much benefit (how much they reduce global warming + positive side-effects) we get per cost (what they costs to implement + side-effects), which solutions would make the top? I think this way of thinking to a large degree is missing in the climate-debate. At least it is in my homecountry, Norway. We should have a plan B! No matter if you think we should try to solve the climate problem with only carbon cuts or not, you have to agree that we should have a plan B. If it turns out that the world doesn't manage to cooperate on cutting emissions sufficiently even though we should, or if consequences of warming (like methane being released from melted permafrost, or ice melting making Earth absorb more sunlight) leads to even further warming, we should have have developed a plan B to stabilize the climate. How I think we should solve the problem I used to be an environmentalist. Of course I wanted us to research a lot on renewable energy and low-carbon technologies, but I didn't think that doing this would be enough by itself. I thought we should drive our cars less, fly less, try to not consume to much of the type of goods that emit the most, choose environmentally friendly energy over fossil energy even when it's considerably more expensive, eat less meat, etc. Not because I wanted it, but because I thought the negative consequences of doing so would be smaller than the negative consequences of not doing it. I'm still an environmentalist (as mentioned before geoengineering might very well be more environmentally friendly than just drastic cuts in emissions) but I now propose a different way of handling the problem: Funding research on renewable energy is one of the most efficient ways to combat global warming, and will also benefit society in other ways. Research a lot on geoengineering and carbon capture. Research a lot on renewable energy and other technologies that are important for reducing emisions (environmentally friendly cars, energy storage, etc.). Researching safe nuclear power is money well spent to, but I don't think it's necessary to cover our energy-needs. Funding the development of renewable energy would be a smart thing to do even if it didn't affect the climate. When solar power becomes efficient it will lead to very, very cheap and convenient energy. I think we have good reasons to be very optimistic about renewable energy, and recently wrote a post that you can read here (it's a lot shorther than this one, I promise!) about solar energy, where I argue that solar power soon will be cheaper than conventional energy. Research a lot on computers, re-engineering of the brain, nanotechnology and other technologies that is needed to boost our general technological growth. Researching nanotechnology for example, might not be looked at as a way to combat climate change, but might be a very effective way of doing just that because it will enable new technologies that can solve the climate-problem. And that it also gives other enormous payoffs shouldn't be a problem. Do emission-cuts, but only the ones that are very cost-effective. A perfect way of dealing with climate change does not exist, but this is the closest I can think of. Some of the reasoning behind my proposal for dealing with climate change is in this post. The rest, especially number 3, will be made clearer in later updates. We should at least take a look at it Even if you don't agree with my conclusions, you should agree that we should give research on geoengineering more funding. From a global perspective it would cost almost nothing to give geoengineering a closer look, and boost the research on some of the more promising geoengineering-ideas. So even if you're a sceptic and think it's unlikely that geoegineering will be a good idea, you should agree that we should fund more research on it. The UK Royal Society published a comprehensive and unbiased report on geoengineering. One of their main recomendations was exactly that: We should fund more research on geoengineering. The Parliamentary Office of Science and Technology wrote in March 2009: There is currently very little public funding specifically earmarked for geo-engineering. Despite a US Department of Energy White Paper (Unpublished) that in 2001 recommended a $64 million, five year programme, less than $1 million of public money is currently directly funding geoengineeringresearch in the USA. In the UK, the Engineering and Physical Sciences Research Council (EPSRC) has proposed a £3 million ‘Ideas Factory’ commencing in 2010. To date, therefore, most researchhas been either funded using existing climate science grants or has been unfunded, performed in researchers’ spare time. Researchers in the field believe that an international research programme of around $100 million could advance the scientific and engineering knowledge significantly. I think it's a nobrainer. We should fund research on geoengineering by at least $100 million dollars - preferably much more. I also think it's important that people learn more about these proposals for dealing with climate change. Geoengineering should be a part of the public debate in the same way as emission-cuts are. I think it's wierd that geoengineering haven't recieved more attention in the media, and it's sad that politicians and enviormentalists know so little about it. If you didn't like this post, feel free to post a comment telling me why you think geoengineering is a bad idea, or simply how much I suck. If you however did like this post, and like me think it's a tragedy that geoengineering has recieved so little attention: Why not recomend this post to your friends, or help spreading it in some other way?
  4. According to a new report released by Amory Lovins and Imran Sheikh nuclear energy is still dangerous, not cost-effective, and too expensive and will even worsen climate change. "A widely heralded view holds that nuclear power is experiencing a dramatic worldwide revival and vibrant growth, because it’s competitive, necessary, reliable, secure, and vital for fuel security and climate protection. That's all false. In fact, nuclear power is continuing its decades-long collapse in the global marketplace because it’s grossly uncompetitive, unneeded, and obsolete—so hopelessly uneconomic that one needn't debate whether it's clean and safe; it weakens electric reliability and national security; and it worsens climate change compared with devoting the same money and time to more effective options." Nuclear energy is a waste of money because it creates a pollution problem that lasts for thousands of years, money that would be better and more productively spent on renewable energy, the report says. The report will also depress the free market supporters as it says that "nuclear power plants are unfinanceable in the private capital market because of their excessive costs and financial risks and the high uncertainty of both." "During the nuclear revival now allegedly underway, no new nuclear project on earth has been financed by private risk capital, chosen by an open decision process, nor bid into the world’s innumerable power markets and auctions. No old nuclear plant has been resold at a value consistent with a market case for building a new one." Via DeSmogBlog.
  5. A recently published report from the Carnegie Endowment for International Peace shows that nuclear power cannot solve climate change due to time and safety limits. "After several decades of disappointing growth, nuclear energy seems poised for a comeback. Talk of a "nuclear renaissance" includes perhaps a doubling or tripling of nuclear capacity by 2050, spreading nuclear power to new markets in the Middle East and Southeast Asia, and developing new kinds of reactors and fuel-reprocessing techniques. But the reality of nuclear energy's future is more complicated. Without major changes in government policies and aggressive financial support, nuclear power is actually likely to account for a declining percentage of global electricity generation." According to the International Energy Agency's World Energy Outlook 2008 nuclear power's share of worldwide electricity generation is expected to drop from 15% in 2006 to 10% in 2030. The report, titled "Nuclear Energy: Rebirth or Resuscitation?", comes to the conclusion that states interested in nuclear energy should be aware of the costs and risks involved in nuclear energy, as well as the time it takes to construct a nuclear plant. "The earliest the first new U.S. reactor could be finished is 2015, but the report notes that it takes about 10 years to put a new plant in service, from licensing to connection to the grid. In two dozen countries that are interested in obtaining civil nuclear energy but have not previously built a reactor, it will take even longer, the report says." The report also comes to the conclusion that nuclear energy will not help countries to reach energy security or independence and that it could risk world security. "In addition, uranium and nuclear fuel come from only a few countries – Canada, Australia, Russia, the United States and France – making nations without resources or technologies as dependent on foreign sources of energy as before, the report notes. Worse still, it says, the need for fuel may drive more nations to develop their own uranium enrichment facilities, raising the risk of the proliferation of nuclear weapons."
  6. Greenhouse gas emissions hit danger mark

    Tim Flannery, a well known and respected climate change scientist, has released information about the coming IPCC-report. According to Tim Flannery, this is important so read carefully, the amount of greenhouse gas emissions in our atmosphere already now is up in 455 ppm (parts per million). This is a number that the scientist thought we wouldn't reach until year 2017. "We thought we'd be at that threshold within about a decade," Flannery told Australian television late on Monday. "We thought we had that much time. But the new data indicates that in about mid-2005 we crossed that threshold," he said. "What the report establishes is that the amount of greenhouse gas in the atmosphere is already above the threshold that could potentially cause dangerous climate change." You might wonder why there is so much fuss about 455 ppm? If you haven’t yet figured it out let me try to explain it with one word: pain. And lot's of it. And it's a pain we in the western world have created. "That 200 gigatonnes of carbon pollutant, the standing stock that's in the atmosphere, is there courtesy of the industrial revolution, and we're the beneficiaries of that and most of the world missed out," he said. "So I see that as a historic debt that we owe the world. And I can't imagine a better way of paying it back than trying to help the poorest people on the planet." It doesn't help to change your light bulbs to CFLs or recycle your newspaper. The only solution and the only thing we MUST do is to decrease our CO2 emissions with over 90%, NOW. We can't afford to wait any longer. I'll finish this post with a link to the article in Washington Post and a quote from Al Gore: "I can't understand why there aren't rings of young people blocking bulldozers and preventing them from constructing coal-fired power stations." Image credit: JohnLeGear. Image licensed under a Creative-Commons Attribution-Share Alike license.