Search the Community

Showing results for tags 'energy'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Announcement
  • Business & Politics
  • Cars & Transportation
  • Culture & Celebrity
  • Energy
  • Renewable Energy
  • Fashion & Beauty
  • Food & Health
  • Global Warming
  • Green Action Tip
  • Design & Architecture
  • Green Blogging
  • Green Quote
  • Green Video
  • Green Web Hosting
  • Science & Technology
  • Nature & Travel
  • Agriculture
  • Bali 2007
  • Biodiversity
  • Biofuels
  • Go Live Give
  • Poland 2008
  • Copenhagen 2009
  • Quick Read
  • Photo Gallery
  • Politics
  • Nature & Wildlife
  • Activism
  • Science
  • Featured
  • Uncategorized
  • COP21

Forums

  • Site Forums
    • Members Lounge
    • Contributors Lounge
  • Environment Forums
    • Green Talk
    • Climate Change
    • Agriculture
    • Wildlife and Biodiversity
    • Sustainable Design
  • Green Living Forums
    • Living Green
    • Good Food
    • Gardening
    • Transportation
    • Activism
    • Green Products and Services
  • Energy Forums
    • Energy
    • Renewable Energy
    • Non-renewable Energy
    • Nuclear Energy
  • General Discussion Forums
    • General Talk
    • Politics and Current Events
    • Science and Technology
    • Entertainment
    • Religion and Philosophy

Blogs

There are no results to display.

Calendars

  • Community Calendar

Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Political views


Religious views

Found 131 results

  1. The world installed 31,100 megawatts of solar photovoltaics (PV) in 2012"”an all-time annual high that pushed global PV capacity above 100,000 megawatts. There is now enough PV operating to meet the household electricity needs of nearly 70 million people at the European level of use. While PV production has become increasingly concentrated in one country - China - the number of countries installing PV is growing rapidly. In 2006, only a handful of countries could boast solar capacity of 100 megawatts or more. Now 30 countries are on that list, which the International Energy Agency (IEA) projects will more than double by 2018. PV semiconductor materials convert the sun's rays directly into clean, carbon-free electricity. Traditional solar cells - made of crystalline silicon - are combined into flat panels or "modules." While residential rooftop systems are measured in kilowatts, large ground-mounted systems can reach thousands of megawatts of capacity. (One megawatt equals 1,000 kilowatts.) Today roughly 60 percent of PV is manufactured in China. A decade ago, China produced almost no PV. But in a kind of gold rush spurred by easy bank loans and government tax incentives and subsidies, China hurtled past PV technology pioneers the United States (in 2006) and Japan (in 2008). The flood of new companies entering the Chinese PV industry over the last several years created a massive oversupply of panels at the global level and accelerated the already fast-paced drop in world PV prices. Many firms in other countries went bankrupt or shut down factories, and now even some Chinese companies are folding as the industry consolidates. Worldwide, PV production in 2012 declined 2 percent from 2011, the first annual drop on record. But this contraction will be short-lived as demand continues to rise. Solar power installations are growing more than 40 percent annually, and falling PV prices are making solar power more affordable. China, where PV had previously been too expensive to be widely adopted, may soon lead the world in generating electricity from PV. Each year since 2006 China has at least doubled the amount of new PV installed nationwide. After installing 5,000 megawatts in 2012, China is number three in the world with 8,300 megawatts of total PV capacity, trailing only Germany and Italy. And in July 2013, the government officially set a new national PV capacity goal of 35,000 megawatts by 2015. Depending on China's 2013 final tally, Japan could well install the most PV this year, perhaps more than 9,000 megawatts. This would give Japan some 16,000 megawatts of solar capacity"”over halfway to its official 2020 target of 28,000 megawatts. Historically, Japan has been the world's leading market for residential rooftop PV; in 2011, some 85 percent of PV capacity added there was residential. After the March 2011 Fukushima nuclear disaster, though, the government introduced a generous incentive encouraging larger projects, thus spurring huge investment in utility-scale PV capacity. The other big Asian solar story comes from India, a country of 1.2 billion people where an estimated 290 million still lack electricity. According to the solar energy consultancy Bridge to India, the country had 1,700 megawatts of PV installed by May 2013, with 80 percent of it in the sun-drenched northwestern states of Gujarat and Rajasthan. Bridge to India projects that figure will jump to 12,800 megawatts by 2016. India's National Solar Mission calls for 22,000 megawatts of solar power nationwide by 2022, including 2,000 megawatts of off-grid PV. Going solar is becoming increasingly attractive in India due to notoriously frequent blackouts and climbing grid power prices - not to mention that solar is now cheaper than diesel for electricity. Even though Asia's PV installations are soaring, it will be some years before it can unseat the European Union (EU) in regional PV dominance. The EU boasts 68 percent of world PV capacity. In 2012, for the second year running, the EU added more PV than it did any other electricity-generating technology. EU countries now annually installing hundreds or thousands of megawatts include Austria, Belgium, Bulgaria, Denmark, Germany, France, Greece, Italy, and the United Kingdom. Germany remains the world's solar capital, home to nearly one third of global PV capacity. For the third straight year, Germany added more than 7,000 megawatts of PV in 2012, reaching 32,000 megawatts. Accounting for some 5 percent of national power use, the electricity flowing from Germany's solar panels in 2012 was enough to supply more than 8 million homes. After adding a world-record 9,400 megawatts of new PV to the grid in 2011, Italy connected 3,400 megawatts in 2012 to keep its second-place spot in installed PV, with 16,300 megawatts total. Italy got 5.6 percent of its electricity from PV in 2012. (See data.) The main policy driver that has allowed Germany and Italy to amass their world-leading solar capacity is the feed-in tariff (FIT), which guarantees renewable energy generators a long-term purchase price for the electricity they supply to the grid. As these markets mature and solar system costs decline, FIT incentives are being reduced. But worldwide more than 70 countries - the majority of them now in the developing world - use some form of FIT. Until recently, the United States lagged badly in PV capacity despite its abundant solar resources. (Nearly every state gets more sun than Germany does.) But annual U.S. solar installations doubled in 2011, and nearly did so again in 2012, when 3,300 megawatts of PV came online. As of mid-2013, U.S. PV capacity had passed the 10,000 megawatt mark. Renewable portfolio standards (RPS) - laws now in 29 states typically requiring that renewables account for a specified share of the electricity that utilities sell - have historically driven U.S. PV development. In California, the U.S. solar leader, utilities must get one third of their electricity from renewable sources by 2020. Federal tax credits and cash grants are also PV catalysts, as are the increasingly popular arrangements allowing homeowners to lease a system from solar developers like Sunrun and SolarCity rather than footing the entire upfront cost. More than half of U.S. residential systems are now leased. Another solar-rich country finally starting to seriously ramp up its PV capacity is Australia. Residential rooftops host the majority of its 2,400 megawatts, 42 percent of which were installed in 2012. In the state of South Australia, one in five homes is solar-powered. Large PV projects are announced seemingly every week in countries with little or no previous solar capacity. For example, in mid-2013 construction finished on an 84-megawatt project in Thailand. The 96-megawatt Jasper Solar Project, financed in part by Google, is under way in South Africa. And two projects of over 100 megawatts gained local approval in Chile. These large projects illustrate another global PV trend: the rise of the mega-project. Only a few years ago, the 10 largest solar farms were between 30 and 60 megawatts. Now PV parks of 100 megawatts or more are becoming commonplace. Arizona's Agua Caliente PV project became the world's largest at 250 megawatts when its fourth phase finished construction in 2012. (It will eventually be 290 megawatts.) Developers have announced a 475-megawatt PV farm in Nagasaki, Japan, due in 2016. Several projects between 500 and 3,000 megawatts are under development in California. Even as PV deployment moves toward larger applications, it is well worth noting the virtues of smaller-scale solar, especially for developing countries. In rural areas with no grid access, installing solar PV at the home level is often cheaper than building a central power plant and electric grid. Bangladesh, working for over a decade with the World Bank, had installed 1.4 million rural solar home systems as of mid-2012, for example. Peru recently announced that the first phase of its national home electrification program will equip a half-million off-grid homes with PV. Analysts expect a new PV installation record of 35,000 megawatts in 2013. Even with the possibility that Europe's annual installations will fall below 10,000 megawatts over the next few years, China, Japan, and the United States, along with the growing number of "newcomer" PV countries, will more than pick up the slack. The IEA estimates, perhaps conservatively, that world PV capacity will more than triple by 2018 to 308,000 megawatts - at peak power, the generating equivalent of 300 large nuclear plants. By J. Matthew Roney. For a plan to stabilize the Earth's climate, see "Time for Plan B." Data and additional resources at www.earth-policy.org.
  2. In the article, Cameron writes that he wants to see fracking in all parts of Britain - and not just in the less populated areas in the north. "It's been suggested in recent weeks that we want fracking to be confined to certain parts of Britain. This is wrong," he said. "I want all parts of our nation to share in the benefits: north or south, Conservative or Labour. We are all in this together." Fracking is a controversial method of extracting gas. The word fracking comes from its technique, which involves fracturing rocks deep underground with water and chemicals to extract natural gas. The British Geological Survey has estimated that there could be around 1300 trillion cubic feet of gas in northern England alone. Cameron claims that only 10% of that is the equivalent of 51 years' worth of gas supply. Besides cheaper gas and energy bills for the British people, Cameron also promises that fracking will bring money to local neighborhoods and create new jobs in a struggling economy. He estimates that around 74 000 news jobs, in and around the gas sector, could be created. "If neighborhoods can see the benefits - and are reassured about its effects on the environment - then I don't see why fracking shouldn't receive real public support," Cameron said. "The Prime Minister's claim that UK shale gas will reduce energy prices doesn't stack," Greenpeace Energy Campaigner Leila Deen said in a response Cameron's pro-fracking comments. "Experts from Ofgem to Deutsche Bank to drilling company Cuadrilla itself agree UK shale will not bring down bills, because unlike the US, the UK is part of a huge European gas market," she said. "The government must come clean about where its getting its advice from, and the role shale gas lobbyists are playing in it." Fracking will bring potential dangers to the local environment, the climate and people's health. Fracking is a fossil fuel which production creates greenhouse gas emissions. It's no more different than coal and more conventional gas - in fact, its carbon footprint could even be worse than coal. Considering all the chemicals involved in the fracking process and the numerous reports of gas leaking into people's water supply, fracking could also become a real threat to people's health. In the US, at least eight states have reported surface, ground, and drinking water contamination due to fracking. In Pennsylvania alone, over 1,400 environmental violations have been attributed to deep gas wells utilizing fracking practices. Fracking will also bring pollution from truck traffic, chemical contamination around storage tanks, and habitat fragmentation and damage from drilling in environmentally sensitive. But Cameron claims that fracking is safe for both the public and the environment. "There is no reason why the process should cause contamination of water supplies or other environmental damage," Cameron said. At least if it's "properly regulated." And if "any shale gas well were to pose a risk of pollution, then we have all the powers we need to close it down," Cameron promises. "Our countryside is one of the most precious things we have in Britain and I am proud to represent a rural constituency. I would never sanction something that might ruin our landscapes and scenery." But, Cameron added, "the huge benefits of shale gas outweigh any very minor change to the landscape." If Cameron gets what he wants, which is thousands of shale gas pads scattered across Britain, he will just lock Britain into another form of fossil fuel addiction for another generation. And we cannot afford that. We need truly green and renewable energy sources.
  3. German manufactuer Siemens have constructed off-shore wind turbines with record-breaking rotors. These enormous rotor blades are 75 meters long, which makes a single blade almost as big as the wingspan of an Airbus A380. All in all, the gigantic rotor measures 154 meters and covers about two and a half football fields. Despite its size the rotor blade weighs 20% less than more conventionally produced blades. This is made possible because of Simenes patented technologies which uses special lightweight materials in its construction process. As you can see from the photo below the entire blade is made as a single piece of "glass fiber-reinforced epoxy resin and balsa wood". Besides making it lightweight, in relation to its size of course, these construction processes also makes the wind turbine extremely strong. And this is a good thing considering that they will be hit with the energy of around 200 tons of air per second out in the sea where these wind turbines are designed to be used. According to Siemens the tips of the 75 meter long blades will be able to move at up to 80 meters per second, or 290 km per hour. The B75 blade is the world's largest fiberglass component cast in one piece. So why are manufactures like Siemens trying to build bigger and bigger wind turbines? Well it’s simple really. As the turbine blades get longer the amount of electricity they produce increases very rapidly. And because offshore wind projects are quite expensive it makes sense to build a fewer big wind turbines than lots of small ones. A prototype 6-megawatt turbine will be erected at the Østerild test station in Denmark later this fall. And in a few years time, 300 of these huge wind turbines will be installed by the Danish energy supplier Dong just off the British coast.
  4. Never gamble with George Monbiot

    George Monbiot was celebrating "victory" the other week in a bet he alleges to have made with Jeremy Leggett of SolarCentury. Jeremy Leggett had claimed, that solar power would achieve grid parity by 2013. George Monbiot managed to get him to turn that into a bet though inevitably when George started getting all legal and turning it into some sort of personal vendetta Jeremy seems to have backed away. Anyway, Monbiot claims he won the bet by virtue of the fact that Solar PV hasn't achieved "grid parity". Of course that depends how you define "grid parity". Monbiot uses a straw man argument to suggest that "grid parity" means ""¦the point at which government support for a technology is no longer required". He claims this was the definition he was given by the DECC, although I've yet to see anything on the DECC website to substantiate this claim. My guess is he interviewed some press advisor for the DECC and asked him a loaded question which got the guy to say what Monbiot wanted to hear. Of course Monbiot perhaps missed the point that if we apply his definition for grid parity to other energy sources, very few if any energy sources are capable of achieving it. For example Monbiot has never been shy of his enthusiasm for Nuclear power, which he describes glowing terms as "UK's most viable sources of low-carbon electricity""¦.is it? Well not according to the BBC's business editor Robert Peston. As I pointed out on my blog sometime ago EDF energy have admitted that the subsidy they would need to make any new nuclear plants in the UK viable would require a strike price of at least £100 per MWh for 40 years, v's a price for onshore wind of £80 per MWh for 15 years (although its claimed as low as £65 or $98/MWh according to the EIA and £40 or $69/MWh according to the NREL) with offshore wind projected at a cost of £100/MWh by the 2020's (the earliest date any new reactor could be operational is 2022). So by Monbiot's own definition nuclear has failed to achieve "grid parity", indeed it falls below the overnight prices for wind energy, which makes his "UK's most viable source of low-carbon electricity" claim very hard to justify. But what about other energy sources? Have they achieved "grid parity"? Well not according to Monbiot's definition. I've just put up a post describing the tales of woe afflicting the UK coal industry. While foreign imported coal is certainly competitive (if we ignore the cost of all that pollution of course!), but UK mined coal is anything but. Government support is needed to keep the UK's coal mines working (the point of my article was to question why we'd want to spend public money a carbon intensive energy source), indeed its likely coal mining in the UK could be all but over within the next decade without significant state sponsored support. So certainly as far as UK coal is concerned, that isn't at a level of "grid parity" either. Indeed when we talk of fossil fuels one often forgets how much is spent, both directly or indirectly, subsidising them. As I've previously pointed out on my blog, of the energy subsidies worldwide much more is spent shoring up fossil fuel consumption, than on renewables. The whole idea of subsidising renewables (or nuclear) was always part of a messy compromise to get governments from having to enact unpopular policies that would have forced people to pay the true costs of our fossil fuel addiction. So Monbiot has managed to reveal the shadowy murkiness of the global energy industry, well no s%it Sherlock is all I can say! (how long have you been a environmental correspondent?) But going back to Jeremy Leggett grid parity comment. I suspect he was referring to solar PV achieving grid parity with other renewable resources by 2013. Indeed as Leggett himself points out in his response "...the cost of solar power has fallen by 60% in the last 3 years while nuclear's costs have gone up by 70%". While PV isn't quite there yet, at least as far as the UK is concerned, it's certainly achieved grid parity in other sunnier climates (....could someone let Monbiot know he owes Jeremy Leggett £100 ;o ) and its expected to achieve as much in the US within a window of 2014-2017. So while perhaps one accuse Jeremy Leggett in letting his enthusiasm for solar PV getting the better of him, but one can certainly understand where that enthusiasm is coming from. If you'd asked me ten years ago how much electricity we could get from solar PV, I'd have thought getting 34 GW's installed capacity from a less than sunny country like Germany was wishful thinking. Any hope for bulk electricity generation from solar I would have argued would only be achieved using solar CSP (Concentrating Solar Power), a technology neither the UK nor Germany has an ideal climate for. Now I would have covered myself by throwing in the caveat that it's always difficult to judge the pace at which any technology will mature (I'd have probably also laughed at the suggestion you could cram 1Terrabyte into a laptop hard drive) and I'd have pointed to theoretical studies which suggested solar panels could be made much more efficient and produced more cheaply"¦.at least "in theory". However, even I have to admit that the performance and growth of solar PV has exceeded all expectations. According to the latest REN global status report 29 GW's of solar PV was added in 2011-2012 for a total installed capacity of 100 GW's of PV (around 103 GW's of renewables was installed worldwide in the same period according to the REN 21 report, for a total capacity of not far off half a terrawatt). Meanwhile nuclear power (which Monbiot favours), according to the IAEA grew by just 4 GW's, although this figure has to be put in the context of a significant decline in nuclear power output over the last few decades. And the fact that many of the world's nuclear plants are ageing and likely in need of replacement (average age of reactors worldwide is about 28 years) and its questionable if global capacity can increase significantly while such "turn over" is being undertaken. Indeed the IAEA report I've cited above, suggests a rate of installation per year of just 6.65 GW/yr between 2010 and 2030, less than a quarter the current installation rate for solar PV and just 1/15th the current installation rate of renewables as a whole. As far as the UK is concerned, despite the Tories attempts to derail the solar industry with cuts to the subsidies, approximately 8 MW's worth of PV is being installed in the UK every week, or about 400-450 MW per year. In March the total installed capacity of PV in the UK stood at 2.5 GW's in March 2013. By contrast the UK's nuclear fleet is in a state of terminal decline and even those who are pro-nuclear seem to accept the fact that new facilities cannot be built before all but one (or possibly two) of the UK's current fleet is shut down. Of course everything is far from rosy in the renewables garden. Personally, while I reckon PV has a role to play in the UK's grid (if the Germans can get 34 GW's from a few roof tops, we'd be fools not to try and do the same), I would still prioritise technologies such as wind and biomass, as well as offshore energy (notably tidal power), as they are better suited to our climate. Also as I've pointed out in prior posts, only about 20% of the UK's energy demand is electricity. The rest is a mixture of heat demand (which tends to hit for a few months in winter) and transportation fuel (cars, buses, trains, planes, etc.). Given the large daily and seasonal fluctuations in demand from these two, energy storage facilities are a key priority (and of course nuclear hits the some problem here as renewables, the need to "bunker" energy to deal with such fluctuations in demand). Indeed PV is now at the centre of a trade dispute between the EU and China over subsidies to their respective solar industries. Of course, I'd argue that clearly the EU and China would only be taking this matter up at the WTO if they thought PV has a future, i.e. that if it hasn't achieved grid parity yet its going to do so at some point. So again, while I tend to agree there are limits to what can be achieved with PV, credit has to be given where it is due. Monbiot can nitpick all he likes but far more low carbon capacity has been added to the UK energy grid from PV than the nuclear energy he favours. Indeed with a £70 billion clean up bill for existing waste stockpile and at least £7 billion a pop for new reactors, its questionable how much, if any of the UK's future energy capacity can be sourced from nuclear.
  5. Increasing global emissions of carbon dioxide (CO2), a heat-trapping gas, are pushing the world into dangerous territory, closing the window of time to avert the worst consequences of higher temperatures, such as melting ice and rising seas. Since the dawn of the Industrial Revolution, carbon emissions from burning fossil fuels have grown exponentially. Despite wide agreement by governments on the need to limit emissions, the rate of increase ratcheted up from less than 1 percent each year in the 1990s to almost 3 percent annually in the first decade of this century. After a short dip in 2009 due to the global financial crisis, emissions from fossil fuels rebounded in 2010 and have since grown 2.6 percent each year, hitting an all-time high of 9.7 billion tons of carbon in 2012. Carbon emissions would have risen even faster were it not for the 7 percent drop among industrial countries since 2007 - a group that includes the United States, Canada, Europe, Russia, Australia, New Zealand, and Japan. The United States, long the world's largest emitter until it was eclipsed by China in 2006, cut carbon emissions by 11 percent over the past five years to 1.4 billion tons. The biggest drop was in emissions from coal - which is primarily used to generate electricity - as power plants switched to cheaper natural gas and as the use of carbon-free wind energy more than quadrupled. U.S. emissions from oil, mostly used for transportation, also dipped. (See data.) Carbon emissions from fossil fuel burning in Europe, as a whole the third largest emitter, fell 9 percent from 2007 to 2012. Emissions in Italy and Spain shrank by 17 and 18 percent, respectively. The United Kingdom's emissions dropped by 11 percent to 126 million tons. Germany's emissions fell by 4 percent to 200 million tons. These countries have been leaders in either wind or solar energy or both. Russia and Japan are two industrial countries that did not see an overall decline in carbon emissions over the past five years. Russia had an uptick in oil use, increasing its emissions by 2 percent to 449 million tons. And in Japan, the quick suspension of nuclear power generation after the Fukushima disaster led to more natural gas and oil use, pushing emissions up 1 percent to 336 million tons in 2012. CO2 emissions in developing countries surpassed those from industrial countries in 2005 and have since continued to soar. China's carbon emissions grew by 44 percent since 2007 to 2.4 billion tons in 2012. Together the United States and China account for more than 40 percent of worldwide emissions. Emissions in India, home to more than a billion people, overtook those in Russia for the first time in 2008. From 2007 to 2012, India's emissions grew 43 percent to reach 596 million tons of carbon. Carbon emissions in Indonesia, another fast-growing economy, have exploded, growing 52 percent to hit 146 million tons in 2012. Although emissions from developing countries now dominate, the industrial countries set the world on its global warming path with over a century's worth of CO2 emissions that have accumulated in the atmosphere. Furthermore, emissions estimates discussed here include only those from fossil fuels burned within a country's borders, meaning that the tallies do not account for international trade. For example, emissions generated from producing goods in China destined for use in the United States are added to China's books. When emissions are counted in terms of the final destination of the product, the industrial countries' carbon bill increases. On a per person basis, the United States emits 4.4 tons of carbon pollution - twice as much as in China. The highest per capita carbon emissions are in several small oil and gas producing countries. In 2012, Qatar spewed out 11 tons of carbon per person. Trinidad and Tobago is next with 9 tons of carbon per person, and Kuwait follows at 7.5 tons. Fossil fuels are not the only source of CO2 emissions. Changing the landscape, for example by burning forests, releases roughly 1 billion tons of carbon globally each year. Brazil and Indonesia have high levels of deforestation and are responsible for much of the current carbon emissions from the land. About half of the CO2 that is released through fossil fuel burning or land use changes stays in the atmosphere. The other half is taken up by the oceans or by plants. As more CO2 is absorbed by the world's oceans, the water becomes more acidic. This change in ocean chemistry can strip away the building blocks of coral reefs, weakening an important link in the oceanic food chain. Scientists warn that the oceans could eventually become saturated with CO2, compromising their capacity to absorb our carbon emissions, with serious consequences for the global thermostat. For some 800,000 years, the amount of CO2 in the atmosphere did not go above 300 parts per million (ppm). But in the 250 years following the start of the Industrial Revolution, enough CO2 built up to bring the average concentration to nearly 394 ppm in 2012. Throughout each year, the concentration of the gas fluctuates, reaching its annual peak in the spring. In May 2013, the CO2 concentration briefly hit 400 ppm, a grim new milestone on the path of climate disruption. Never in human history has the atmosphere been so full of this odorless and colorless yet powerfully disruptive gas. CO2 acts like the glass of a greenhouse, trapping heat. Since humans began burning fossil fuels on a large scale, the global average temperature has risen 1.4 degrees Fahrenheit (0.8 degrees Celsius), with most of the increase occurring since 1970. The effects of higher temperatures include rising sea levels, disappearing Arctic sea ice, more heat waves, and declining yields of food crops. More warming is in the pipeline as the climate system slowly responds to the higher CO2 concentrations. Reports from international institutions, such as the International Energy Agency, based on work by thousands of scientists emphasize that little time remains to cut emissions and avoid a climate catastrophe. The World Bank notes that absent any policy changes, the global average temperature could be 9 degrees Fahrenheit warmer by the end of this century, well above what human civilization has ever witnessed. But a different future - one based on a clean energy economy - is within our reach. Germany, not a particularly sunny country, has harnessed enough of the sun's rays to power some 8 million homes, for example. The United States has enough wind turbines installed to power more than 15 million homes. Kenya generates roughly a quarter of its electricity from geothermal energy. This is but a glimpse of the enormous potential of renewable energy. The question is not whether we can build a carbon-free economy, but whether we can do it before climate change spirals out of control. By Emily E. Adams. For a plan to stabilize the Earth's climate, see "Time for Plan B" and more at www.earth-policy.org.
  6. Wind power anywhere with MARS

    If I say Mars, what do you think of then? No, the planet Mars is the wrong answer. The correct answer is Magenn's Power Turbine MARS. MARS is a new simple solution to produce wind energy, anywhere. According to Magenn their MARS has all advantages over current existing wind turbines. But how does it work and why is it better than ordinary wind turbines? MARS produces its energy 1000 feet up in the air. That means MARS can generate electricity on a regular basis. Another upside with MARS compared to the more ordinary wind turbines is that it can't produce the so called "ground turbulence" and that, according to Magenn, MARS won't kill any birds due to its big compact size. MARS is bird and bat friendly with lower noise emissions and is capable of operating in a wider range of wind speeds - from 4 mph to greater than 60 mph. Magenn says MARS is as silent as an air conditioner. No wonder when it's located 100 feet up in the air. But how does it get so high up in the air you might wonder? Well, Magenn's Air Rotor System is filled with helium which makes it lighter than air. Just like how an airship works. With MARS Magenn is trying to attract developing nations that has a limited or non existent energy infrastructure. MARS will go into production sometime this year.