Sign in to follow this  
Followers 0
  • entries
    131
  • comments
    0
  • views
    106,019

Recent advances in mesenchymal stem cells in the past six months (part one)

Sign in to follow this  
Followers 0
qxcvbnmy

220 views

Mesenchymal stem cells have the characteristics of low immunogenicity and homing to ischemic or injured tissues. After entering into the host body, they can homing to specific sites and be differentiated into endoderm, mesoderm, and ectoderm under the influence of microenvironment cells derived from individual germ layers, such as bone, cartilage, tendon, fat, liver, kidney, skin, muscle, nerve, and even pancreas, are more than 10 kinds of mature cells, thus becoming ideal seed cells for organ repair in regenerative medicine.

qqxxxxxx20191216212440-2.png

Initially, mesenchymal stem cells were found in the bone marrow, but highly invasive bone marrow donation experiments were needed. In addition, the number and differentiation potential of mesenchymal stem cells decreased with age. Recently, umbilical cord blood has been less damaged due to acquisition methods and has been used as an alternative source of mesenchymal stem cells. Another promising source of mesenchymal stem cells is adipose tissue. This review compares these three mesenchymal stem cell sources from aspects such as morphology, success rate of isolation of mesenchymal stem cells, frequency of clonal colony formation, expansion potential, multi-directional differentiation ability, and immune phenotype. Adipose tissue can be used as an alternative source of bone marrow tissue for the isolation of mesenchymal stem cells. In addition, people have also found that mesenchymal stem cells are also found in cord blood, periodontal ligaments, amniotic fluid, dermis, periosteum, skeletal muscle, fetal lung, fetal liver, placenta and pancreas.

Mesenchymal stem cells have broad clinical application prospects and can be used to treat diseases of the nervous system, liver and kidney injury, autoimmune disease, heart disease, bone disease, cartilage disease, ischemic vascular disease, diabetic complications and tumors. They can also be used in tissue engineering and facial shaping. In addition, they can be co-transplanted with hematopoietic stem cells to treat blood diseases. Based on this, the article made an inventory of the research progress made by mesenchymal stem cells in recent years.

1.TEPCM: magnetic mesenchymal stem cells promise to improve cartilage repair

doi: 10.1089 / ten.tec.2019.0001

Cells carrying superparamagnetic iron oxide nanoparticles (SPIOs) can be directed to a specific location by an external magnetic field, which is beneficial for tissue repair.

Recently, a research report entitled "In Vitro Safety and Quality of Magnetically Labeled Human Mesenchymal Stem Cells Preparation for Cartilage Repair" was published in an international magazine Tissue Engineering Part C: Methods. The safety and effectiveness of this magnetically labeled mesenchymal stem cells (MSCs) in repairing cartilage defects.

Researcher Dr. Naosuke Kamei said that “in this study, we demonstrated the safety of magnetically labeled MSCs through karyotyping, clone formation experiments, and total proliferation experiments. After labeling, we found only small differences in mesenchymal stem cells”. Researchers can evaluate the quality of stem cells by the differentiation of chondrocytes and their reactivity to magnetic forces. The results show that the appropriate concentration of superparamagnetic iron oxide nanoparticles can help optimize the mesenchyme while ensuring magnetic attractiveness and differentiation ability of plastid stem cells.

  1. Nat Commun: Identify key proteins that regulate angiogenesis in tumors

doi: 10.1038 / s41467-019-10946-y

Recently, in a research report published in the international journal Nature Communications, scientists from the Barcelona Institute of Biomedicine found that inhibiting the function of p38 protein or inhibiting angiogenesis in human and mouse colon cancer. This process is called angiogenesis, which is essential for cancer cell growth and can promote cancer progression and metastasis.

Researcher Dr. Angel R. Nebreda said that we found that p38 activity is very important for mesenchymal stem cells (MSCs). These stem cells have high plasticity and can be concentrated around blood vessels. It participates and plays a role in many key processes, such as tumor formation. This study clarifies the molecular mechanism of tumor angiogenesis. Researchers have now described the activity of p38 in cancer cells, but until now they did not know the key role that the protein plays in MSCs, and very little is known about how the protein is involved in tumor angiogenesis.

In this study, researchers clarified the key role of the protein p38 in the cardiovascular process during tumor angiogenesis, especially how it promotes the development of MSCs. The researchers said that p38 can play a role in MSCs cells. The effect is to inhibit angiogenesis. Using genetically modified mouse models, researchers have found that inhibiting p38 may stimulate cardiovascular production in tumors, and this situation also occurs during the repair process of damaged tissues in the body.

3.EBioMedicine: researchers develop cancer treatments that target bone metastasis while retaining bone tissue

doi: 10.1016 / j.ebiom.2019.06.047

Researchers at the University of California, Irvine (Irvine, UCI) have developed a treatment and tested it on mice using engineered stem cells to target and kill cancerous metastases in bone tissue while preserving bone. The new method, published in the journal EBioMedicine, equips engineered mesenchymal stem cells to target them, prompting them to transfer to bone metastases, where they release therapeutic drugs.

"The power of this strategy is that we provide a combination of anti-tumor and anti-bone resorption agents so that we can effectively block the vicious circle between cancer and its bones," said the study's lead author Weian Zhao, associate professor of pharmaceutical sciences and biomedical engineering, said. "Compared to chemotherapy, this is a safe and almost non-toxic treatment, and chemotherapy often causes lifelong problems for patients."

To be continued in Part Two…

 

 


  Report Entry
Sign in to follow this  
Followers 0


0 Comments


There are no comments to display.

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now